
Extending ZABBIX
all our microphones are muted

ask your questions in Q&A, not in the Chat

use Chat for discussion, networking or applause

Webinar

WHY and HOW

1

Extending ZABBIX

Why to extend?
Zabbix will evenly distribute checks

Customized environment

Specific approach requirement

Running custom scripts/commands

Monitoring something that is not available

out-of-the-box

Extending ZABBIX

How to extend?
Zabbix provides multiple different approaches to do that!

Using Zabbix agent checks:

Using item key system.run[*]

User parameters

Agentless checks

External checks

Script items

Code-based approach

Zabbix API

Loadable modules

Agent 2 plugins

SYSTEM.RUN

2

SYSTEM.RUN
system.run[command,<mode>]

command: command that should be executed, i.e. bash or PowerShell

mode: wait/nowait

wait - wait till end of execution (default), usually used for data gathering
nowait - do not wait end of execution, can be used for scheduled command execution

Be careful with nowait option, Zabbix can create multiple processes
if execution of the command takes a lot of time

Extending ZABBIX

SYSTEM.RUN examples
system.run[ipcs -u]

system.run["powershell.exe -NoProfile -Nologo -File C:\scr\get_updates.ps1"]

Extending ZABBIX

SYSTEM.RUN examples
Allow remote command execution in the agent configuration:

With Zabbix agents before 5.0, you need to add

(This will allow any remote command execution)

Restart the agent:

Extending ZABBIX

vi /etc/zabbix/zabbix_agentd.conf (or zabbix_agent2.conf)

systemctl restart zabbix-agent (zabbix-agent2)

Option: AllowKey
AllowKey=system.run[ipcs -u]

Option: EnableRemoteCommands - Deprecated
EnableRemoteCommands=1

Configuring SYSTEM.RUN
Even though it is possible to allow any remote command execution with newer Zabbix agents by adding to
agent configuration:

It can raise serious security concerns and a better approach is to allow only approved commands to be executed.

Is there a difference?

Extending ZABBIX

Option: AllowKey
AllowKey=system.run[*]
AllowKey=system.run[*,*]

Option: AllowKey
AllowKey=system.run[*]

Test if your SYSTEM can RUN the command
Starting with 5.0 you can test your newly added system.run items right from the frontend using the test
button:

Extending ZABBIX

Test if your SYSTEM can RUN the command
Or you can use zabbix_get for the same purpose:

Extending ZABBIX

zabbix_get –s <agent-IP> -k system.run['ipcs –u']

------ Messages Status --------
allocated queues = 0
used headers = 0
used space = 0 bytes

------ Shared Memory Status --------
……

Test if your SYSTEM can RUN the command
If during testing, you see errors like:

Consider checking your key, if the command has quotes:

Consider escaping them to execute the command successfully:

Extending ZABBIX

system.run["ps -ef | grep zabbix | awk {'print $2" "$8'}"]

system.run["ps -ef | grep zabbix | awk {'print $2\" \"$8'}"]

User Parameters

3

User Parameters
Another way of executing command, not predefined in Zabbix

Shell commands

Custom scripts

Syntax: UserParameter=key,[<command>]

key - The keys that will be used in the item, any unique key can be
specified

command - Command that will be executed when the key is
requested

All commands are executed under the same OS user under which
Zabbix agent is running. Make sure this user will have enough
permissions to execute the command specified

Extending ZABBIX

User Parameters
User parameters must be configured for every agent where they will be used:

Directly in zabbix_agentd.conf or zabbix_agent2.conf files

Included in a .conf file in the zabbix_agentd.d/zabbix_agent2.d directory (recommended)

UserParameter can be simple or flexible:

Simple: UserParameter=mysql.qps,mysqladmin status | cut -f9 -d":"

Flexible: UserParameter=mysql.ping[*], mysqladmin -u$1 -p$2 ping | grep -c alive

Extending ZABBIX

Option: UserParameter
User-defined parameter to monitor. There can be several user-defined parameters.
#
UserParameter=

User Parameters
After defined in the configuration file, UserParameter can be added in the frontend:

Simple: UserParameter=mysql.qps,mysqladmin status | cut -f9 -d":"

Flexible: UserParameter=mysql.ping[*], mysqladmin -u$1 -p$2 ping | grep -c alive

Extending ZABBIX

User Parameters
Multiple user parameters can be defined in each agent:

Multiple include files can be specified with different sets of parameters

All keys per agent must be unique or Zabbix agent will exit with error:

Directory from which UserParameter will be executed can be specified:

The return value of the command is standard output together with standard error

Environment may not be preserved on some Unix systems

Extending ZABBIX

ERROR: cannot add user parameter "mysql.status,mysqladmin status : key "mysql.status" already exists

Option: UserParameterDir
When executing UserParameter commands the agent will change the working directory to the one
specified in the UserParameterDir option.
UserParameterDir=

User Parameters
Some symbols can not be passed as arguments by default:

\ ' " ` * ? [] { } ~ $! & ; () < > | # @

newline characters are not allowed

If not set:

Extending ZABBIX

Option: UnsafeUserParameters
Allow all characters to be passed in arguments to user-defined parameters.
The following characters and newline characters are not allowed:
\ ' " ` * ? [] { } ~ $! & ; () < > | # @
Range: 0-1
UnsafeUserParameters=1

User Parameters
To reload list of user parameters:

Restart Zabbix agent to re-read entire configuration

Use a specific Zabbix agent runtime command

Works both for Zabbix agent and Zabbix agent 2

Only user parameters will be updated, other configuration changes ignored

Not supported for zabbix_agentd on OpenBSD, NetBSD and Windows

Extending ZABBIX

systemctl restart zabbix-agent

zabbix_agentd –R userparameter_reload

zabbix_agent2 –R userparameter_reload

External checks

3

External checks
script[<parameter1>,<parameter2>,...]

script: name of a shell script or a binary.

parameter(s): optional command line parameters.

Can be passed without parameters - use key script[] or script

Script must be in the directory defined as the location for external
scripts in Zabbix server/proxy configuration file

Executed by Zabbix server/proxy under zabbix user

Do not overuse external checks! As each script requires starting a
fork process by Zabbix server, running many scripts can decrease
Zabbix performance.

Extending ZABBIX

External checks
Create and copy the script to folder defined in ExternalScripts parameter:

Make sure the script is executable:

Test script from the frontend or from command line under zabbix user, i.e.:

If necessary, add permissions on the command to allow that user to execute it. Only commands in the specified
directory are available for execution.

Extending ZABBIX

Option: ExternalScripts
Full path to location of external scripts.
ExternalScripts=/usr/lib/zabbix/externalscripts

chmod +x check_oracle.sh

su -s /bin/bash -c ./check_oracle.sh zabbix

External checks
Create the item in the frontend:

Zabbix server or proxy will execute:

The return value of the check is standard output together with standard error (the full output with trimmed
trailing whitespace is returned since Zabbix 2.0).

Extending ZABBIX

./check_oracle.sh 192.0.0.1 DBuser DBpassword

External checks – Unsupported status
The item will change the status to unsupported if:

Zabbix server lacks the necessary permissions to execute the script

Script is not found

Timeout has been reached while executing the script

Exit code is not 0

A text (character, log or text type of information) item will not become unsupported in case of standard error
output.

Extending ZABBIX

Script items

4

Script Items
Item key: any unique key that will be used to identify the item.

Can be used to collect data by executing a user-defined
JavaScript code with the ability to retrieve data over HTTP/HTTPS

Optional list of parameters (pairs of name and value) and timeout
can be specified.

Executed by Zabbix server or Zabbix proxy

Zabbix uses Duktape, an embedded Javascript engine based on
ECMAScript E5/E5.1

Extending ZABBIX

Script Items
Extending ZABBIX

Fields you will need to configure:

Key - enter a unique key that will be used to identify the item.

Parameters – specify the variables to be passed to the script as the attribute and value pairs. Built-in macros
and user macros are supported.

Script - JavaScript code. This code must provide the logic for returning the metric value. May perform HTTP
GET, POST, PUT and DELETE requests and has control over HTTP headers and request body.

Timeout - JavaScript execution timeout (1-60s, default 3s).

Note: parameters are passed as JSON string, which you can parse to an object and use in the script

Script Items
Extending ZABBIX

Create a script type item:

Script Items
With script like:

To get the content of Zabbix release page and make use of parameters.

Note: multiple HTTP requests can be made too:

Extending ZABBIX

var obj = JSON.parse(value);
var url = obj.url;
var subpage = obj.subpage;
var request = new HttpRequest();
return request.get(url + subpage);

var request = new HttpRequest();
return request.get("https://www.zabbix.com") + request.get("https://www.zabbix.com/release_notes");

Zabbix API

5

Zabbix API
Allows you to:

Programmatically retrieve and modify the configuration of
Zabbix

Access historical data

Create new applications to work with Zabbix

Integrate Zabbix with third party software

Automate routine tasks

Control User Permissions from the frontend

Extending ZABBIX

Zabbix API
Zabbix API connects to the Zabbix frontend:

Address that will be used - http://zabbix.example.com/zabbix/api_jsonrpc.php.

Protocol used – JSON-RPC 2.0

Consists of multiple separate method, like host.create, history.get, etc.

Each method described in the documentation with examples

Communication is encoded using the JSON format.

Extending ZABBIX

Zabbix API – Login method
Before getting any data, you will need to login:

And get the authentication token:

Extending ZABBIX

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "zabbix_api",
"password": "afHhYTTQhsBX"

},
"id": 1,
"auth": null

}

{
"jsonrpc": "2.0",
"result": "0424bd59b80767b54e4191e7",
"id": 1

}

Zabbix API – API Token
Or event simpler:

generate API token in the Zabbix frontend:

Extending ZABBIX

Zabbix API – Method Call
Now you can configure your Zabbix and get needed reports trough API, like finding hosts where inventory field os
contains Centos:

Extending ZABBIX

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {
"searchInventory": {
"os": "Centos"
},
"selectInventory": ["os","type"],
"output": ["hostid","name"]
},
"auth": "<PUT AUTHENTICATION TOKEN HERE>",
"id": 1
}

Zabbix API
It is possible to use any utility to POST the JSON-RPC data to Zabbix API:

GUI based utilities:

Command line utilities:

Extending ZABBIX

curl -s -X POST -H 'Content-Type: application/json-rpc' -d '
{"jsonrpc":"2.0","method":"user.login","params":
{"user":"zabbix_api","password":"afHhYTTQhsBX"},
"id":1,"auth":null}
' http://www.initmax.cz/zabbix/api_jsonrpc.php

Zabbix API
Or even by using various programming or scripting languages :

Use programming language you are familiar with

Control workflow using built-in operands

Some programming languages have Zabbix API plugins

Extending ZABBIX

Loadable Modules

6

Loadable Modules
Ability to implement any logic in C language:

Is a shared library used by Zabbix daemon and loaded on
startup

Typically, modules will have .so extension

Can be built into Zabbix server, agent or proxy

perform ~10 times faster than user parameters, commands
or scripts

Can be used only within Unix platforms. Won’t work for agents
in a Windows environment

Extending ZABBIX

Loadable Modules
There are currently six functions in the Zabbix module API:

One is mandatory:

zbx_module_api_version() - returns the API version implemented by this module

Five other are optional:

zbx_module_init() - performs the initialization for the module

zbx_module_item_list() - returns a list of item keys supported by the module

zbx_module_item_timeout()- specifies the timeout for items implemented by the module

zbx_module_history_write_cbs() - returns functions to write history data of different types

zbx_module_uninit() - performs the necessary uninitialization such as freeing allocated resources, closing file
descriptors, etc.

Extending ZABBIX

Loadable Modules
Zabbix agent, server and proxy support two parameters to deal with modules:

LoadModulePath – full path to the location of loadable modules

LoadModule – module names to load at startup, which contain:
Module name for modules included in the LoadModulePath
Module name with a full path starting with / (LoadModulePath is ignored)

Zabbix component will fail to start if:

The module file is missing

In case of bad permissions (must be readable by Zabbix user)

If a shared library is not a Zabbix module

Extending ZABBIX

LoadModulePath=/usr/local/lib/zabbix/agent/
LoadModule=mysql.so
LoadModule=apache.so
LoadModule=/home/myuser/mymodule.so

GO Plugins

7

GO Plugins
Zabbix Agent 2 gives Zabbix more capabilities for data collection
on the “GO”

Less complicated than C Loadable modules, so creating plugins is
much more accessible.

 Agent interacts with plugins through a two-tier task queue:

Each plugin has a task queue;

Scheduler has an active plugin queue.

Ensures better concurrency.

GO plugins are available exclusively for Zabbix Agent 2

https://www.zabbix.com/documentation/current/en/devel/plugins

Extending ZABBIX

https://www.zabbix.com/documentation/current/en/devel/plugins

GO Plugins
For Zabbix Agent 2 five interfaces are available:

Exporter - A very simple interface that polls metrics and returns a value, several values, an error, or nothing at
all

Watcher - With Watcher you can implement a metric polling process without using Scheduler. This may be
useful for plugins that use trapping

Collector - is used for plugins that need to collect data regularly. However, it can’t return data, so you’ll need
Exporter for that.

Runner - provides a way to perform initialization when a plugin is activated (the Start() function) and
deinitialization when it is stopped (the Stop() function).

Configurator - serves for configuring plugins.

Extending ZABBIX

GO Plugins
Extending ZABBIX

A plugin is simply a Go package with one or several interfaces that define its logic:

package packageName
import "zabbix.com/pkg/plugin"
type Plugin struct {

plugin.Base
}
var impl Plugin
func (p *Plugin) Export(key string, params []string, ctx plugin.ContextProvider) (res
interface{}, err error) {

// Write your code here
return

}
func init() {

plugin.RegisterMetrics(&impl, "PluginName", "key", "Description.")
}

Questions?

Extending ZABBIX

CONTACT US:

Phone: +420 800 244 442

Web: https://www.initmax.cz

Email: tomas.hermanek@initmax.cz

LinkedIn: https://www.linkedin.com/company/initmax

Twitter: https://twitter.com/initmax

Tomáš Heřmánek: +420 732 447 184

