
Advanced problem detection
all our microphones are muted

ask your questions in Q&A, not in the Chat

use Chat for discussion, networking or applause

Webinar

Zabbix data flow

1

ADVANCED PROBLEM DETECTION

Zabbix data flow

Visualization

HistoryAnalysis

Notifications

Data collection

ZABBIX SERVER DATABASE

ADVANCED PROBLEM DETECTION

How often to execute checks?

Every N seconds
Zabbix will evenly distribute checks

Different frequency in different time periods
Every X seconds in working time

Every Y second in weekend

At a specific time (Zabbix 3.0)
Ready for business checks

Every hour starting from 9:00 at working hours (9:00,
10:00,…, 18:00)

Triggers

2

Trigger – problem definition
function(/host/key,parameter)<operator><constant>

last(/server/system.cpu.load) > 5

Operators
- + / * < > = <> >= <= not or and

Functions
min max avg last count date time diff regexp and much more!

Analyze everything: any metric and any host
last(/node1/system.cpu.load) > 5 and last(/node2/system.cpu.load) > 5 and last(/nodes/tps) < 5000

Scope of Usage
Triggers, calculated items, expression macros

ADVANCED PROBLEM DETECTION

Macros – variable

Zabbix supports a number of built-in macros which may be used in various
situations. These macros are variables, identified by a specific syntax:

{MACRO}

Zabbix supports the following macros:

{MACRO} - built-in macro

{<macro>.<func>(<params>)} - macro functions

{$MACRO} - user-defined macro, optionally with context

{#MACRO} - macro for low-level discovery

{?EXPRESSION} - expression macro

ADVANCED PROBLEM DETECTION

User Macros

Macro resolution precedence:

1. host level macros (checked first)

2. macros defined for first level templates of the host (i.e., templates linked directly to the
host), sorted by template ID

3. macros defined for second level templates of the host, sorted by template ID

4. macros defined for third level templates of the host, sorted by template ID, etc.

5. global macros (checked last)

If a macro does not exist for a host, Zabbix will try to find it in the host templates of increasing depth. If still not
found, a global macro will be used, if exists.

ADVANCED PROBLEM DETECTION

Macros in trigger expressions

User macros can be used in:

trigger name and description

trigger expression parameters and constants

Examples:

net.tcp.service[ssh,,{$SSH_PORT}]

last(/ca_001/system.cpu.load[,avg1])>{$MAX_CPULOAD}

min(/ca_001/system.cpu.load[,avg1],{$CPULOAD_PERIOD})>{$MAX_CPULOAD}

ADVANCED PROBLEM DETECTION

User Macros with context

An optional context can be used in user macros, allowing to override the default
value with a context-specific one.

{$MACRO:"static text"}

{$MACRO:regex:"regular expression"}

Examples:

{$LOW_SPACE_LIMIT:/tmp}

{$LOW_SPACE_LIMIT:regex:"^/var/log/.*$"}

Trigger Example:

last(/host/vfs.fs.size[{#FSNAME},pfree])<{$LOW_SPACE_LIMIT:"{#FSNAME}"}

ADVANCED PROBLEM DETECTION

Expression Macro

{?EXPRESSION_MACROS}

If defined, this name will be used to create the problem event name, instead
of the trigger name.

The event name may be used to build meaningful alerts containing problem
data

The same set of macros is supported as in the trigger name, plus {TIME} and
{?EXPRESSION} expression macros.

Supported since Zabbix 5.2.0

Can be used in different locations – Event Name, Maps, name of Graphs

ADVANCED PROBLEM DETECTION

ADVANCED PROBLEM DETECTION

Expression Macro

Junior
Problem: Load of Exchange server increased by more than 10% last month

Expert

Problem: Load of Exchange server increased by 24% in July (0.69) comparing to June (0.56)

Load of {HOST.HOST} server increased by
{{?100*trendavg(//system.cpu.load,1M:now/M)/trendavg(//system.cpu.load,1M:now/M-1M)}.fmtnum(0)}% in
{{TIME}.fmttime(%B,-1M)}
({{?trendavg(//system.cpu.load,1M:now/M)}.fmtnum(2)}) comparing to
{{TIME}.fmttime(%B,-2M)}
({{?trendavg(//system.cpu.load,1M:now/M-1M)}.fmtnum(2)})

https://www.zabbix.com/documentation/6.0/en/manual/config/triggers/expression?hl=expression#examples-of-
triggers

https://www.zabbix.com/documentation/6.0/en/manual/config/triggers/expression?hl=expression
https://www.zabbix.com/documentation/6.0/en/manual/config/triggers/expression?hl=expression

Trigger Functions

3

Basic functions - last

last(/host/key,parameter)

The most recent value.

Supported value types: Float, Integer, String, Text, Log.

Parameters:
See common parameters;
#num (optional) - the Nth most recent value.

ADVANCED PROBLEM DETECTION

Configuration
ADVANCED PROBLEM DETECTION

ADVANCED PROBLEM DETECTION

Junior level

Performance
last(/server/system.cpu.load) > 5

Availability

last(/server/net.tcp.service[http]) = 0

ADVANCED PROBLEM DETECTION

False positives

last(/server/system.cpu.load) > 5

ADVANCED PROBLEM DETECTION

Too sensitive

last(/server/net.tcp.service[http]) = 0

Advanced problem detection

Junior level

Too sensitive leads to
False positives

False positives

4

How to avoid false positives?

Be careful and define problems wisely!

What does it really mean?
system is overloaded

application does not work

service is not available

ADVANCED PROBLEM DETECTION

Problem:

CPU load > 5

No problem:

CPU load = 4.99 Resolved?

Problem:

free disk space < 10%

No problem:

free disk space = 10.001% Resolved?

Problem:

SSH check failed

No problem:

SSH is up Resolved?

ADVANCED PROBLEM DETECTION

Examples

Analyze history

Performance
min(/server/system.cpu.load,10m) > 5

Availability
max(/server/net.tcp.service[http],5m) = 0
max(/server/net.tcp.service[http],#3) = 0

ADVANCED PROBLEM DETECTION

Analyze history
ADVANCED PROBLEM DETECTION

min(/server/system.cpu.load,10m) > 5

Analyze history
ADVANCED PROBLEM DETECTION

max(/server/net.tcp.service[http],#3) = 0

Different conditions for problem and recovery

Before
last(/server/system.cpu.load) > 5

Now
Problem definition: last(/server/system.cpu.load)>5
Recovery expression: last(/server/system.cpu.load)}<=1

ADVANCED PROBLEM DETECTION

Different conditions for problem and recovery
ADVANCED PROBLEM DETECTION

Problem definition: last(/server/system.cpu.load)>5 …Recovery expression: last(/server/system.cpu.load)}<=1

Examples

System is overloaded
Problem definition:

min(/server/system.cpu.load,5m)>3

Recovery expression:

max(/server/system.cpu.load,2m)<=1

No free disk space /

Problem definition:

last(/server/vfs.fs.size[/,pfree])<10

Recovery expression:

min(/server/vfs.fs.size[/,pfree],15m)>30

ADVANCED PROBLEM DETECTION

Examples

SSH is not available
Problem definition:

max(/server/net.tcp.service[ssh],#3)=0

Recovery expression:

min(/server/net.tcp.service[ssh],#10)=1

ADVANCED PROBLEM DETECTION

Anomalies

How to detect?
By comparing with the data from the same period, the period is taken from the past.

Average CPU load for the last hour is 2x higher than

CPU load for the same period week ago

avg(/server/system.cpu.load,1h) > 2* avg(/server/system.cpu.load,1h:now-7d)

ADVANCED PROBLEM DETECTION

Anomalies
ADVANCED PROBLEM DETECTION

Comparison with the data 7 days ago

Flapping

How to detect?
By comparing changecount of the data from the time period.

Operational status changes of interface

changecount(/SNMP v2/net.if.status[ifOperStatus.{#SNMPINDEX}],{$FLAP.PERIOD})>{$FLAP.NUMBER}

Trigger dependency
Link down -> Flapping Detected

ADVANCED PROBLEM DETECTION

Agregate functions

5

Basic functions – min,max,avg

min(/host/key,parameter,#3)

max(/host/key,parameter,#3)

avg(/host/key,parameter,#3)

The lowest value of an item within the defined evaluation period.

The highest value of an item within the defined evaluation period.

The average value of an item within the defined evaluation period.

Supported value types: Float, Integer.

ADVANCED PROBLEM DETECTION

Basic functions – stddevsamp, stddevpop
stddevpop(/host/key,1h)

stddevsamp(/host/key,1h)
The population standard deviation in collected values within the defined evaluation period.

The sample standard deviation in collected values within the defined evaluation period.

ADVANCED PROBLEM DETECTION

ADVANCED PROBLEM DETECTION

Aggregate functions
avg The average value of an item within the defined evaluation period.

bucket_percentile Calculates the percentile from the buckets of a histogram.

count The count of values in an array returned by a foreach function.
histogram_quantile Calculates the φ-quantile from the buckets of a histogram.

item_count The count of existing items in configuration that match the filter criteria.

kurtosis The "tailedness" of the probability distribution in collected values within the defined evaluation period.

mad The median absolute deviation in collected values within the defined evaluation period.

max The highest value of an item within the defined evaluation period.

min The lowest value of an item within the defined evaluation period.

skewness The asymmetry of the probability distribution in collected values within the defined evaluation period.

stddevpop The population standard deviation in collected values within the defined evaluation period.

stddevsamp The sample standard deviation in collected values within the defined evaluation period.

sum The sum of collected values within the defined evaluation period.

sumofsquares The sum of squares in collected values within the defined evaluation period.

varpop The population variance of collected values within the defined evaluation period.
varsamp The sample variance of collected values within the defined evaluation period.

Mathematical functions

6

ADVANCED PROBLEM DETECTION

Mathematical functions
abs The absolute value of a value.

acos The arccosine of a value as an angle, expressed in radians.

asin The arcsine of a value as an angle, expressed in radians.

atan The arctangent of a value as an angle, expressed in radians.

atan2 The arctangent of the ordinate (value) and abscissa coordinates specified as an angle, expressed
in radians.

avg The average value of the referenced item values.

cbrt The cube root of a value.

ceil Round the value up to the nearest greater or equal integer.

cos The cosine of a value, where the value is an angle expressed in radians.

cosh The hyperbolic cosine of a value.

cot The cotangent of a value, where the value is an angle expressed in radians.

degrees Converts a value from radians to degrees.

e The Euler's number (2.718281828459045).

ADVANCED PROBLEM DETECTION

Mathematical functions
exp The Euler's number at a power of a value.

expm1 The Euler's number at a power of a value minus 1.

floor Round the value down to the nearest smaller or equal integer.

log The natural logarithm.

log10 The decimal logarithm.

max The highest value of the referenced item values.

min The lowest value of the referenced item values.

mod The division remainder.

pi The Pi constant (3.14159265358979).

power The power of a value.

radians Converts a value from degrees to radians.

rand Return a random integer value.

round Round the value to decimal places.

signum Returns '-1' if a value is negative, '0' if a value is zero, '1' if a value is positive.

ADVANCED PROBLEM DETECTION

Mathematical functions
sin The sine of a value, where the value is an angle expressed in radians.

sinh The hyperbolical sine of a value, where the value is an angle expressed in radians.

sqrt The square root of a value.

sum The sum of the referenced item values.

tan The tangent of a value.

truncate Truncate the value to decimal p

Mathematical min x aggregate min:

min(<value1>,<value2>,...)

min(avg(/host/key),avg(/host2/key2))

x

min(/host/key,parameter,#3)

History functions

7

fuzzytime

fuzzytime(/host/key,60s)
Check how much the passive agent time differs from the Zabbix server/proxy time.

fuzzytime(/host/key,60s)=0 #detect a problem if the time difference is over 60 seconds

ADVANCED PROBLEM DETECTION

change

change(/host/key)

The amount of difference between the previous and latest value.

Supported value types: Float, Integer, String, Text, Log.

For strings returns: 0 - values are equal; 1 - values differ.

change(/host/key)>10

ADVANCED PROBLEM DETECTION

changecount

changecount(/host/key,(sec|#num)<:time shift>,<mode>)

The number of changes between adjacent values within the defined evaluation period.

Supported value types: Float, Integer, String, Text, Log.

mode (must be double-quoted) - possible values:
all - count all changes (default);
dec - count decreases;
inc - count increases

changecount(/host/key,#10,"inc")

ADVANCED PROBLEM DETECTION

count
count(/host/key,(sec|#num)<:time shift>,<operator>,<pattern>)

The number of values within the defined evaluation period.

Supported value types: Float, Integer, String, Text, Log.

operator (must be double-quoted). Supported operators:
eq - equal (default for integer, float)
ne - not equal
gt - greater
ge - greater or equal
lt - less
le - less or equal
like (default for string, text, log) - matches if contains pattern (case-sensitive)
bitand - bitwise AND
regexp - case-sensitive match of the regular expression given in pattern
iregexp - case-insensitive match of the regular expression given in pattern

pattern - the required pattern (string arguments must be double-quoted).

ADVANCED PROBLEM DETECTION

countunique
countunique(/host/key,(sec|#num)<:time shift>,<operator>,<pattern>)

The number of unique values within the defined evaluation period.

Supported value types: Float, Integer, String, Text, Log.

operator (must be double-quoted). Supported operators:
eq - equal (default for integer, float)
ne - not equal
gt - greater
ge - greater or equal
lt - less
le - less or equal
like (default for string, text, log) - matches if contains pattern (case-sensitive)
bitand - bitwise AND
regexp - case-sensitive match of the regular expression given in pattern
iregexp - case-insensitive match of the regular expression given in pattern

pattern - the required pattern (string arguments must be double-quoted).

ADVANCED PROBLEM DETECTION

ADVANCED PROBLEM DETECTION

History functions
change The amount of difference between the previous and latest value.

changecount The number of changes between adjacent values within the defined evaluation period.

count The number of values within the defined evaluation period.

countunique The number of unique values within the defined evaluation period.

find Find a value match within the defined evaluation period.

first The first (the oldest) value within the defined evaluation period.

fuzzytime Check how much the passive agent time differs from the Zabbix server/proxy time.

last The most recent value.

logeventid Check if the event ID of the last log entry matches a regular expression.

logseverity The log severity of the last log entry.

logsource Check if log source of the last log entry matches a regular expression.

monodec Check if there has been a monotonous decrease in values.

monoinc Check if there has been a monotonous increase in values.

nodata Check for no data received.

percentile The P-th percentile of a period, where P (percentage) is specified by the third parameter.

rate The per-second average rate of the increase in a monotonically increasing counter within the defined time
period.

Foreach functions

8

ADVANCED PROBLEM DETECTION

Foreach functions
avg_foreach Returns the average value for each item.

bucket_rate_foreach Returns pairs (bucket upper bound, rate value) suitable for use in the
histogram_quantile() function, where "bucket upper bound" is the value of item key parameter defined by the
<parameter number> parameter.

count_foreach Returns the number of values for each item.

exists_foreach Returns '1' for each enabled item.

last_foreach Returns the last value for each item.

max_foreach Returns the maximum value for each item.

min_foreach Returns the minimum value for each item.

sum_foreach Returns the sum of values for each item.

ADVANCED PROBLEM DETECTION

Foreach Functions - tip

Calculated Items on:
Host level

sum(last_foreach(/host/net.if.in[*]))

Hostgroup level

avg_foreach(/*/mysql.qps?[group="MySQL Servers"],5m)

TAG level

avg_foreach(/*/key[a,*,c]?[(tag=„ENV:production")],10m)

Complex level

avg_foreach(/*/key[a,*,c]?[(group=„Servers" and tag=„EU") or (group=„Linux„) and (tag=„CZ" or
tag=„ENV:production"))],5m)

Bitwise functions

9

ADVANCED PROBLEM DETECTION

Bitwise functions
bitand The value of "bitwise AND" of an item value and mask.

bitlshift The bitwise shift left of an item value.

bitnot The value of "bitwise NOT" of an item value.

bitor The value of "bitwise OR" of an item value and mask.

bitrshift The bitwise shift right of an item value.

bitxor The value of "bitwise exclusive OR" of an item value and mask.

Date and time functions

10

ADVANCED PROBLEM DETECTION

now
Example – certificate expiration:

(last(/Website certificate by Zabbix agent 2/cert.not_after) - now()) / 86400 < {$CERT.EXPIRY.WARN}

now The number of seconds since the Epoch (00:00:00 UTC, January 1, 1970).

ADVANCED PROBLEM DETECTION

Date and time functions
date The current date in YYYYMMDD format.

dayofmonth The day of month in range of 1 to 31.

dayofweek The day of week in range of 1 to 7.

now The number of seconds since the Epoch (00:00:00 UTC, January 1, 1970).

time The current time in HHMMSS format.

Trend functions

11

ADVANCED PROBLEM DETECTION

Trend functions
Trend functions, in contrast to history functions, use trend data for calculations.

Trends store hourly aggregate values. Trend functions use these hourly averages, and thus are useful
for long-term analysis.

Trend function results are cached so multiple calls to the same function with the same parameters
fetch info from the database only once. The trend function cache is controlled by the
TrendFunctionCacheSize server parameter.

Triggers that reference trend functions only are evaluated once per the smallest time period in the
expression. For instance, a trigger like:

trendavg(/host/key,1d:now/d) > 1 or trendavg(/host/key2,1w:now/w) > 2

will be evaluated once per day. If the trigger contains both trend and history (or time-based) functions,
it is calculated in accordance with the usual principles.

Baselines

12

ADVANCED PROBLEM DETECTION

baselinewma
baselinewma (/host/key,data period,season_unit,num_seasons)

Returns baseline by averaging data periods in seasons

Uses Weighted Moving Average algorithm (WMA)

baselinewma(/host/key,1h:now/h,"d",3)
#calculating the baseline based on the last full hour within a 3-day period that ended yesterday. If
"now" is Monday 13:30, the data for 12:00-12:59 on Friday, Saturday, and Sunday will be analyzed

baselinewma(/host/key,2h:now/h,"d",3)
#calculating the baseline based on the last two hours within a 3-day period that ended yesterday.
If "now" is Monday 13:30, the data for 11:00-12:59 on Friday, Saturday, and Sunday will be analyzed

baselinewma(/host/key,1d:now/d,"M",4)
#calculating the baseline based on the same day of month as 'yesterday' in the 4 months
preceding the last full month. If the required date doesn't exist, the last day of month is taken. If
today is September 1st, the data for July 31st, June 30th, May 31st, April 30th will be analyzed.

ADVANCED PROBLEM DETECTION

baselinedev
baselinedev(/host/key,data period:time shift,season unit,num seasons)

Returns the number of deviations (by stddevpop algorithm) between the last data period and the same
data periods in preceding seasons.

baselinedev(/host/key,1d:now/d,"M",6)
#calculating the number of standard deviations (population) between the previous day and the
same day in the previous 6 months. If the date doesn't exist in a previous month, the last day of
the month will be used (Jul,31 will be analysed against Jan,31, Feb, 28,... June, 30)

baselinedev(/host/key,1h:now/h,"d",10)
#calculating the number of standard deviations (population) between the previous hour and the
same hours over the period of ten days before yesterday

ADVANCED PROBLEM DETECTION

Trend functions
baselinedev Returns the number of deviations (by stddevpop algorithm) between the last data period and
the same data periods in preceding seasons.

baselinewma Calculates the baseline by averaging data from the same timeframe in multiple equal time
periods ('seasons') using the weighted moving average algorithm.

trendavg The average of trend values within the defined time period.

trendcount The number of successfully retrieved trend values within the defined time period.

trendmax The maximum in trend values within the defined time period.

trendmin The minimum in trend values within the defined time period.

trendstl Returns the rate of anomalies during the detection period - a decimal value between 0 and 1
that is ((the number of anomaly values)/(total number of values)).

trendsum The sum of trend values within the defined time period.

Operator functions

13

ADVANCED PROBLEM DETECTION

Operator functions
between Check if the value belongs to the given range.

in Check if the value is equal to at least one of the listed values.

between(value,min,max)

Check if the value belongs to the given range.

Supported value types: Integer, Float.

Returns: 1 - in range; 0 - otherwise.

in(value,value1,value2,...valueN)

Check if the value is equal to at least one of the listed values.

Supported value types: Integer, Float, Character, Text, Log.

Returns: 1 - if equal; 0 - otherwise.

Prediction functions

14

ADVANCED PROBLEM DETECTION

Prediction functions
forecast(/host/key,(sec|#num)<:time shift>,time,<fit>,<mode>)

The future value, max, min, delta or avg of the item.

Supported value types: Float, Integer.

forecast(/host/key,#10,1h) #forecast the item value in one hour based on the last 10 values

timeleft(/host/key,(sec|#num)<:time shift>,threshold,<fit>)

The time in seconds needed for an item to reach the specified threshold.

Supported value types: Float, Integer.

timeleft(/host/key,#10,0) #the time until the item value reaches zero based on the last 10 values

ADVANCED PROBLEM DETECTION

Prediction functions
fit (optional; must be double-quoted) - the function used to fit historical data. Supported fits:

linear - linear function (default)
polynomialN - polynomial of degree N (1 <= N <= 6)
exponential - exponential function
logarithmic - logarithmic function
power - power function
Note that polynomial1 is equivalent to linear;

mode (optional; must be double-quoted) - the demanded output. Supported modes:
value - value (default)
max - maximum
min - minimum
delta - max-min
avg - average

Forecast
ADVANCED PROBLEM DETECTION

Trigger function timeleft

Forecast
ADVANCED PROBLEM DETECTION

4 hours

Trigger function forecast

Does history analysis affect performance of Zabbix?

Yes, but not significantly.

Especially as of Zabbix 2.2.0.

ADVANCED PROBLEM DETECTION

ZABBIX SERVERCACHEDATABASE

String functions

15

ADVANCED PROBLEM DETECTION

String functions
ascii The ASCII code of the leftmost character of the value.

bitlength The length of value in bits.

bytelength The length of value in bytes.

char Return the character by interpreting the value as ASCII code.

concat The string resulting from concatenating the referenced item values or constant values.

insert Insert specified characters or spaces into the character string beginning at the specified position in the string.

left Return the leftmost characters of the value.

length The length of value in characters.

ltrim Remove specified characters from the beginning of string.

mid Return a substring of N characters beginning at the character position specified by 'start'.

repeat Repeat a string.

replace Find the pattern in the value and replace with replacement.

right Return the rightmost characters of the value.

rtrim Remove specified characters from the end of string.

trim Remove specified characters from the beginning and end of string.

Zabbix 7.0

16

Zabbix 7.0

jsonpath(value,path,<default>)
Return the JSONPath result.

Supported value types: String, Text, Log.

jsonpath(last(/host/proc.get[zabbix_agentd,,,summary]),"$..size")

xmlxpath(value,path,<default>)
Return the XML XPath result.

Supported value types: String, Text, Log.

xmlxpath(last(/host/xml_result),"/response/error/status")

ADVANCED PROBLEM DETECTION

Zabbix 7.0

Updated functions
Aggregate functions now also support non-numeric types for calculation. This may be useful, for example, with
the count and count_foreach functions.

The count and count_foreach aggregate functions support optional parameters operator and pattern, which
can be used to fine-tune item filtering and only count values that match given criteria.

All foreach functions no longer include unsupported items in the count.

The function last_foreach, previously configured to ignore the time period argument, accepts it as an optional
parameter.

Supported range for values returned by prediction functions has been expanded to match the range of double
data type. Now timeleft() function can accept values up to 1.7976931348623158E+308 and forecast() function
can accept values ranging from -1.7976931348623158E+308 to 1.7976931348623158E+308.

ADVANCED PROBLEM DETECTION

Dependencies

17

Dependencies
ADVANCED PROBLEM DETECTION

CRM is not working

DB is unavailable

No free diskspace

Section „Problems“
ADVANCED PROBLEM DETECTION

In summary
Analyze history

No problem!= Solution

Use different conditions for problem definition and recovery

Pay attention to anomaly detection

Use correlation

Resolve common problems automatically

ADVANCED PROBLEM DETECTION

Questions

18

ADVANCED PROBLEM DETECTION

Contact us:

Phone: +420 800 244 442

Web: https://www.initmax.cz

Email: tomas.hermanek@initmax.cz

LinkedIn: https://www.linkedin.com/company/initmax

Twitter: https://twitter.com/initmax

Tomáš Heřmánek: +420 732 447 184

