
PostgreSQL Performance Tuning
all your microphones are muted

ask your questions in Q&A, not in the Chat

use Chat for discussion, networking or applause

Webinar



The Performance Tuning Reality
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Sysadmin tuning gains: 
10-30% improvement

OS optimization

PostgreSQL parameter tuning

Stability and monitoring focus
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Developer tuning gains:
100-1000% improvement

Missing indexes

Query optimization

Data model improvements

This is the reality



Streaming replication: 2-5% primary overhead

Synchronous replication: 20-30% latency increase

Backup strategies: pg_basebackup vs. pgbackrest

Connection failover: Use connection pooling with health 
checks

Use proven solutions for HA: Patroni
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When Your Database is Down, Performance is Zero



PostgreSQL Performance Anti-Patterns

Over-tuning shared_buffers: >40% RAM causes OS cache competition

Ignoring connection limits: >1000 connections = context switching overhead

Default autovacuum settings: Designed for HDDs, not SSDs

Disabling fsync: Never do this in production

Single large database: Consider multiple smaller databases

Forgetting to ANALYZE: Statistics drive query planning
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Sysadmin tuning options
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Our Performance Tuning Scope

Hardware: 8 CPU cores, 16-64GB RAM, 
SSD storage

Software: PostgreSQL 15+, Linux VMs, 
On-premises

Workload: Mixed OLTP/OLAP, 
connection pooling required
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Monitoring: Zabbix, pgwatch, 
pg_stat_statements

Goal: Maximize stability while 
optimizing performance



Expected Performance Improvements

Typical improvements from sysadmin tuning
Query response time: 15-25% faster

Throughput: 20-30% increase

I/O reduction: 30-40% with WAL compression

Connection overhead: 60-70% reduction with pooling
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OLTP vs OLAP - Different Tuning Strategies

PostgreSQL Performance Tuning

Characteristic OLTP OLAP

Queries Short, frequent Long, complex

work_mem 64-128MB 512MB-2GB

Connections Many (pooled) Few (direct)

Indexes Many small Few large

Autovacuum Aggressive Moderate

Partitioning By date/ID By time/region



Memory management
vm.swappiness = 1

vm.dirty_ratio = 10

vm.dirty_background_ratio = 5

vm.overcommit_memory = 2

vm.nr_hugepages = 4096
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Impact
15-20% I/O performance improvement

Reduces swap usage

Optimizes dirty page handling

SSD-optimized I/O scheduling

Eliminates unnecessary metadata writes

Essential OS-Level Optimizations

# I/O scheduler for SSD
echo deadline > /sys/block/sda/queue/scheduler

# Filesystem mount options
/dev/sda1 /var/lib/postgresql ext4 noatime,discard,barrier=0



Huge Pages - Essential for Large shared_buffers

Benefits
Reduced TLB misses

TLB (Translation Lookaside Buffer) holds about ~1500 entries

Lower memory overhead

Better memory locality

Requirement: Mandatory for shared_buffers > 8GB

Calculate required huge pages (8GB shared_buffers) 

8192MB / 2MB(default) = 4096 pages
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PostgreSQL Memory Parameters
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Parameter/RAM 16GB 32GB 64GB

shared_buffers 4GB 8GB 16GB

work_mem 64MB 96MB 128MB

maintenance_work_mem 1GB 2GB 4GB

effective_cache_size 8GB 24GB 48GB
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Write-Ahead Log Performance Tuning

Impact: 30% I/O reduction with zstd compression

Compression Comparison

zstd: Best compression ratio

lz4: Fastest compression

pglz: Legacy default

# Compression options in PostgreSQL 15+
wal_compression = zstd

# Buffer and size configuration
wal_buffers = 64MB
max_wal_size = 40GB
checkpoint_timeout = 60min
checkpoint_completion_target = 0.95
full_page_write = on # Torn page corruption prevention



Balancing Performance vs. Recovery Time
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Trade-off - Longer checkpoints = longer recovery time

Tuning Goals

Spread I/O evenly

Avoid I/O spikes

Balance with recovery requirements

Monitor checkpoint frequency

checkpoint_timeout = 60min        # Longer = less I/O spikes
max_wal_size = 40GB               # Depends on write volume
checkpoint_completion_target = 0.95 # Spread I/O over time

# Monitor checkpoint performance(17+)
SELECT num_timed, num_requested, write_time, sync_time FROM pg_stat_checkpointer;



How PostgreSQL writes data
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PostgreSQL Dirty Page Flushing
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Understanding Dirty Pages

Dirty pages are modified data pages in PostgreSQL's shared_buffers that 
haven't been written to disk yet. PostgreSQL uses three mechanisms to flush 
these dirty pages:

Background Writer (BGWriter) - Continuous gentle flushing

Checkpointer - Periodic forced synchronization

Backend Processes - Emergency direct flushing (performance killer!)

No clean pages available in shared_buffers for new data

BGWriter can't keep up with dirty page generation

Shared_buffers is too small for the workload



PostgreSQL Dirty Page Flushing
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Fixing Backend Direct Writes

Increase shared_buffers (if <25% of RAM)

shared_buffers = 8GB

Make BGWriter more aggressive

bgwriter_delay = 100ms

bgwriter_lru_maxpages = 200

bgwriter_lru_multiplier = 4.0

Tune checkpoints to be less frequent but more spread out

checkpoint_timeout = 15min

checkpoint_completion_target = 0.9

max_wal_size = 10GB



PostgreSQL Dirty Page Flushing
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Key Takeaways for Sysadmins

BGWriter is your friend - Tune it to be more aggressive on modern 
hardware

Backend writes are the enemy - They indicate undersized shared_buffers
or overwhelmed BGWriter

Checkpoints should be infrequent but spread out - Long intervals with 
gradual completion

Monitor the ratios - Backend write percentage is the most critical metric

SSD changes everything - Default settings assume spinning disks

The goal is to have BGWriter handle 90%+ of dirty page flushing, 
checkpointer handle periodic durability, and backend processes 
never have to flush pages directly.



Aggressive Autovacuum for SSD Performance
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Modern reality

Default settings designed for spinning disks

# For 8 CPU system
autovacuum_max_workers = 6

# 10x default for SSD
autovacuum_vacuum_cost_limit = 2000  
autovacuum_vacuum_cost_delay = 10ms

# 5% instead of 20%
autovacuum_vacuum_scale_factor = 0.05

# Table-specific tuning for busy tables
ALTER TABLE busy_table SET ( autovacuum_vacuum_scale_factor = 0.01 );

SSD Advantages

Higher IOPS capacity

Better random access performance

Can handle aggressive vacuuming



HOT Updates - Heap-Only Tuples
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Normal Update Process

Create new row version (tuple)

Update ALL indexes pointing to old tuple

Mark old tuple as dead

Eventually VACUUM removes dead tuple

Result: Expensive index maintenance, more I/O

HOT Update Process

Create new row version in SAME page

NO index updates needed

Chain old and new tuples together

Much faster, less bloat

Key Requirement: New tuple must fit on 
same page AND no indexed columns changed

HOT Update: When PostgreSQL can update a row without updating indexes



Fillfactor - Reserving Space for Updates
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What is Fillfactor?

Fillfactor: Percentage of page filled during 
initial INSERT

Default: 100% (fill pages completely)

Range: 10-100%

Trade-offs:

Lower fillfactor: More HOT updates, less storage 
efficiency

Higher fillfactor: Better storage density, fewer 
HOT updates

Workload-based Recommendations:

Read-heavy (OLAP): fillfactor = 100 (maximize 
storage efficiency)

Balanced OLTP: fillfactor = 85-90

Update-heavy: fillfactor = 70-80

Test different fillfactor values with your 
actual workload to find the optimal 
balance between storage and 
performance.



Verify Your Tuning Results
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PostgreSQL checks

Cache hit ratio > 95%

Connection utilization < 80%

Checkpoint frequency reasonable

No excessive temp file usage

Autovacuum keeping up with changes

System checks

Huge pages allocated and used

I/O scheduler set to deadline/noop

Swap disabled or minimal

Overcommit memory disabled



Developer tuning options
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Recognizing Application-Level Issues
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Red flags requiring developer intervention

Sequential scans on large tables

Queries with temp file usage > work_mem

N+1 query patterns

Missing foreign key indexes or generally missing indexes

Inefficient data types (char vs varchar)

uuid as PK (bad for indexing)

-- Bad: N+1 query pattern
SELECT * FROM orders WHERE customer_id = ?;  -- 1000 times

-- Good: Single query with JOIN
SELECT * FROM orders o JOIN customers c ON o.customer_id = c.id;



The fastest query is the one you don't have to execute
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Application Logic and Caching Strategies

Smart Data Structures in Memory

Precomputed Values and Materialized Data

Batch Operations Instead of Individual Queries

Application-Level Caching (Redis/Memcached)

Prepared statements

Read Replicas for Query Separation

Lazy Loading



Monitoring / troubleshooting
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Monitoring essentials
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System metrics like CPU, RAM, HDD, etc.

Number of connections

Locking

XMIN horizon age

BgWriter / Checkpointer

WAL rate

Temp bytes

Cache hit

TPS / QPS

Replication lag / inactive slots



Zabbix
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PgWatch
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Key Takeaways for PostgreSQL Performance
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Key Takeaways for PostgreSQL Performance
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Memory is king: 25% RAM for shared_buffers, tune work_mem

Connection pooling is mandatory: Use PgBouncer or similar

Modern hardware needs modern settings: SSD-optimized parameters

Monitor everything: pg_stat_statements, system metrics, locks

Stability first: Performance is irrelevant if the database isn’t up.

Know when to escalate: Some issues require developer intervention



Questions?
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Certified training and Support
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Certified training and Support
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Certified training and Support



PostgreSQL Performance Tuning

Contact us:

Phone: +420 800 244 442

Web: https://www.initmax.cz

Email: tomas.hermanek@initmax.cz

LinkedIn: https://www.linkedin.com/company/initmax

Twitter: https://twitter.com/initmax

Tomáš Heřmánek: +420 732 447 184
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