
PostgreSQL Performance Tuning
all your microphones are muted

ask your questions in Q&A, not in the Chat

use Chat for discussion, networking or applause

Webinar

The Performance Tuning Reality

1

Sysadmin tuning gains:
10-30% improvement

OS optimization

PostgreSQL parameter tuning

Stability and monitoring focus

PostgreSQL Performance Tuning

Developer tuning gains:
100-1000% improvement

Missing indexes

Query optimization

Data model improvements

This is the reality

Streaming replication: 2-5% primary overhead

Synchronous replication: 20-30% latency increase

Backup strategies: pg_basebackup vs. pgbackrest

Connection failover: Use connection pooling with health
checks

Use proven solutions for HA: Patroni

PostgreSQL Performance Tuning

When Your Database is Down, Performance is Zero

PostgreSQL Performance Anti-Patterns

Over-tuning shared_buffers: >40% RAM causes OS cache competition

Ignoring connection limits: >1000 connections = context switching overhead

Default autovacuum settings: Designed for HDDs, not SSDs

Disabling fsync: Never do this in production

Single large database: Consider multiple smaller databases

Forgetting to ANALYZE: Statistics drive query planning

PostgreSQL Performance Tuning

Sysadmin tuning options

2

Our Performance Tuning Scope

Hardware: 8 CPU cores, 16-64GB RAM,
SSD storage

Software: PostgreSQL 15+, Linux VMs,
On-premises

Workload: Mixed OLTP/OLAP,
connection pooling required

PostgreSQL Performance Tuning

Monitoring: Zabbix, pgwatch,
pg_stat_statements

Goal: Maximize stability while
optimizing performance

Expected Performance Improvements

Typical improvements from sysadmin tuning
Query response time: 15-25% faster

Throughput: 20-30% increase

I/O reduction: 30-40% with WAL compression

Connection overhead: 60-70% reduction with pooling

PostgreSQL Performance Tuning

OLTP vs OLAP - Different Tuning Strategies

PostgreSQL Performance Tuning

Characteristic OLTP OLAP

Queries Short, frequent Long, complex

work_mem 64-128MB 512MB-2GB

Connections Many (pooled) Few (direct)

Indexes Many small Few large

Autovacuum Aggressive Moderate

Partitioning By date/ID By time/region

Memory management
vm.swappiness = 1

vm.dirty_ratio = 10

vm.dirty_background_ratio = 5

vm.overcommit_memory = 2

vm.nr_hugepages = 4096

PostgreSQL Performance Tuning

Impact
15-20% I/O performance improvement

Reduces swap usage

Optimizes dirty page handling

SSD-optimized I/O scheduling

Eliminates unnecessary metadata writes

Essential OS-Level Optimizations

I/O scheduler for SSD
echo deadline > /sys/block/sda/queue/scheduler

Filesystem mount options
/dev/sda1 /var/lib/postgresql ext4 noatime,discard,barrier=0

Huge Pages - Essential for Large shared_buffers

Benefits
Reduced TLB misses

TLB (Translation Lookaside Buffer) holds about ~1500 entries

Lower memory overhead

Better memory locality

Requirement: Mandatory for shared_buffers > 8GB

Calculate required huge pages (8GB shared_buffers)

8192MB / 2MB(default) = 4096 pages

PostgreSQL Performance Tuning

PostgreSQL Memory Parameters

PostgreSQL Performance Tuning

Parameter/RAM 16GB 32GB 64GB

shared_buffers 4GB 8GB 16GB

work_mem 64MB 96MB 128MB

maintenance_work_mem 1GB 2GB 4GB

effective_cache_size 8GB 24GB 48GB

PostgreSQL Performance Tuning

Write-Ahead Log Performance Tuning

Impact: 30% I/O reduction with zstd compression

Compression Comparison

zstd: Best compression ratio

lz4: Fastest compression

pglz: Legacy default

Compression options in PostgreSQL 15+
wal_compression = zstd

Buffer and size configuration
wal_buffers = 64MB
max_wal_size = 40GB
checkpoint_timeout = 60min
checkpoint_completion_target = 0.95
full_page_write = on # Torn page corruption prevention

Balancing Performance vs. Recovery Time

PostgreSQL Performance Tuning

Trade-off - Longer checkpoints = longer recovery time

Tuning Goals

Spread I/O evenly

Avoid I/O spikes

Balance with recovery requirements

Monitor checkpoint frequency

checkpoint_timeout = 60min # Longer = less I/O spikes
max_wal_size = 40GB # Depends on write volume
checkpoint_completion_target = 0.95 # Spread I/O over time

Monitor checkpoint performance(17+)
SELECT num_timed, num_requested, write_time, sync_time FROM pg_stat_checkpointer;

How PostgreSQL writes data

PostgreSQL Performance Tuning

PostgreSQL Dirty Page Flushing

PostgreSQL Performance Tuning

Understanding Dirty Pages

Dirty pages are modified data pages in PostgreSQL's shared_buffers that
haven't been written to disk yet. PostgreSQL uses three mechanisms to flush
these dirty pages:

Background Writer (BGWriter) - Continuous gentle flushing

Checkpointer - Periodic forced synchronization

Backend Processes - Emergency direct flushing (performance killer!)

No clean pages available in shared_buffers for new data

BGWriter can't keep up with dirty page generation

Shared_buffers is too small for the workload

PostgreSQL Dirty Page Flushing

PostgreSQL Performance Tuning

Fixing Backend Direct Writes

Increase shared_buffers (if <25% of RAM)

shared_buffers = 8GB

Make BGWriter more aggressive

bgwriter_delay = 100ms

bgwriter_lru_maxpages = 200

bgwriter_lru_multiplier = 4.0

Tune checkpoints to be less frequent but more spread out

checkpoint_timeout = 15min

checkpoint_completion_target = 0.9

max_wal_size = 10GB

PostgreSQL Dirty Page Flushing

PostgreSQL Performance Tuning

Key Takeaways for Sysadmins

BGWriter is your friend - Tune it to be more aggressive on modern
hardware

Backend writes are the enemy - They indicate undersized shared_buffers
or overwhelmed BGWriter

Checkpoints should be infrequent but spread out - Long intervals with
gradual completion

Monitor the ratios - Backend write percentage is the most critical metric

SSD changes everything - Default settings assume spinning disks

The goal is to have BGWriter handle 90%+ of dirty page flushing,
checkpointer handle periodic durability, and backend processes
never have to flush pages directly.

Aggressive Autovacuum for SSD Performance

PostgreSQL Performance Tuning

Modern reality

Default settings designed for spinning disks

For 8 CPU system
autovacuum_max_workers = 6

10x default for SSD
autovacuum_vacuum_cost_limit = 2000
autovacuum_vacuum_cost_delay = 10ms

5% instead of 20%
autovacuum_vacuum_scale_factor = 0.05

Table-specific tuning for busy tables
ALTER TABLE busy_table SET (autovacuum_vacuum_scale_factor = 0.01);

SSD Advantages

Higher IOPS capacity

Better random access performance

Can handle aggressive vacuuming

HOT Updates - Heap-Only Tuples

PostgreSQL Performance Tuning

Normal Update Process

Create new row version (tuple)

Update ALL indexes pointing to old tuple

Mark old tuple as dead

Eventually VACUUM removes dead tuple

Result: Expensive index maintenance, more I/O

HOT Update Process

Create new row version in SAME page

NO index updates needed

Chain old and new tuples together

Much faster, less bloat

Key Requirement: New tuple must fit on
same page AND no indexed columns changed

HOT Update: When PostgreSQL can update a row without updating indexes

Fillfactor - Reserving Space for Updates

PostgreSQL Performance Tuning

What is Fillfactor?

Fillfactor: Percentage of page filled during
initial INSERT

Default: 100% (fill pages completely)

Range: 10-100%

Trade-offs:

Lower fillfactor: More HOT updates, less storage
efficiency

Higher fillfactor: Better storage density, fewer
HOT updates

Workload-based Recommendations:

Read-heavy (OLAP): fillfactor = 100 (maximize
storage efficiency)

Balanced OLTP: fillfactor = 85-90

Update-heavy: fillfactor = 70-80

Test different fillfactor values with your
actual workload to find the optimal
balance between storage and
performance.

Verify Your Tuning Results

PostgreSQL Performance Tuning

PostgreSQL checks

Cache hit ratio > 95%

Connection utilization < 80%

Checkpoint frequency reasonable

No excessive temp file usage

Autovacuum keeping up with changes

System checks

Huge pages allocated and used

I/O scheduler set to deadline/noop

Swap disabled or minimal

Overcommit memory disabled

Developer tuning options

3

Recognizing Application-Level Issues

PostgreSQL Performance Tuning

Red flags requiring developer intervention

Sequential scans on large tables

Queries with temp file usage > work_mem

N+1 query patterns

Missing foreign key indexes or generally missing indexes

Inefficient data types (char vs varchar)

uuid as PK (bad for indexing)

-- Bad: N+1 query pattern
SELECT * FROM orders WHERE customer_id = ?; -- 1000 times

-- Good: Single query with JOIN
SELECT * FROM orders o JOIN customers c ON o.customer_id = c.id;

The fastest query is the one you don't have to execute

PostgreSQL Performance Tuning

Application Logic and Caching Strategies

Smart Data Structures in Memory

Precomputed Values and Materialized Data

Batch Operations Instead of Individual Queries

Application-Level Caching (Redis/Memcached)

Prepared statements

Read Replicas for Query Separation

Lazy Loading

Monitoring / troubleshooting

4

Monitoring essentials

PostgreSQL Performance Tuning

System metrics like CPU, RAM, HDD, etc.

Number of connections

Locking

XMIN horizon age

BgWriter / Checkpointer

WAL rate

Temp bytes

Cache hit

TPS / QPS

Replication lag / inactive slots

Zabbix

PostgreSQL Performance Tuning

PgWatch

PostgreSQL Performance Tuning

Key Takeaways for PostgreSQL Performance

5

Key Takeaways for PostgreSQL Performance

PostgreSQL Performance Tuning

Memory is king: 25% RAM for shared_buffers, tune work_mem

Connection pooling is mandatory: Use PgBouncer or similar

Modern hardware needs modern settings: SSD-optimized parameters

Monitor everything: pg_stat_statements, system metrics, locks

Stability first: Performance is irrelevant if the database isn’t up.

Know when to escalate: Some issues require developer intervention

Questions?

PostgreSQL Performance Tuning

Certified training and Support

PostgreSQL Performance Tuning

Certified training and Support

PostgreSQL Performance Tuning

Certified training and Support

PostgreSQL Performance Tuning

Contact us:

Phone: +420 800 244 442

Web: https://www.initmax.cz

Email: tomas.hermanek@initmax.cz

LinkedIn: https://www.linkedin.com/company/initmax

Twitter: https://twitter.com/initmax

Tomáš Heřmánek: +420 732 447 184

	Snímek 1: PostgreSQL Performance Tuning
	Snímek 2
	Snímek 3: This is the reality
	Snímek 4: When Your Database is Down, Performance is Zero
	Snímek 5: PostgreSQL Performance Anti-Patterns
	Snímek 6
	Snímek 7: Our Performance Tuning Scope
	Snímek 8: Expected Performance Improvements
	Snímek 9: OLTP vs OLAP - Different Tuning Strategies
	Snímek 10: Essential OS-Level Optimizations
	Snímek 11: Huge Pages - Essential for Large shared_buffers
	Snímek 12: PostgreSQL Memory Parameters
	Snímek 13: Write-Ahead Log Performance Tuning
	Snímek 14: Balancing Performance vs. Recovery Time
	Snímek 15: How PostgreSQL writes data
	Snímek 16: PostgreSQL Dirty Page Flushing
	Snímek 17: PostgreSQL Dirty Page Flushing
	Snímek 18: PostgreSQL Dirty Page Flushing
	Snímek 19: Aggressive Autovacuum for SSD Performance
	Snímek 20: HOT Updates - Heap-Only Tuples
	Snímek 21: Fillfactor - Reserving Space for Updates
	Snímek 22: Verify Your Tuning Results
	Snímek 23
	Snímek 24: Recognizing Application-Level Issues
	Snímek 25: The fastest query is the one you don't have to execute
	Snímek 26
	Snímek 27: Monitoring essentials
	Snímek 28: Zabbix
	Snímek 29: PgWatch
	Snímek 30
	Snímek 31: Key Takeaways for PostgreSQL Performance
	Snímek 32
	Snímek 33: Certified training and Support
	Snímek 34: Certified training and Support
	Snímek 35: Certified training and Support
	Snímek 36: Contact us:

